9 логических парадоксов, которые просто ломают мозг

9 логических парадоксов, которые просто ломают мозг

Многие из этих парадоксов существуют уже десятки веков, однако до сих пор вызывают жаркие дискуссии в научных кругах. Да и не только в научных. Попробуйте как-нибудь на досуге всерьёз задуматься хотя бы над одним из них и вы поймёте, что не так-то всё здесь и просто.

Летящая стрела

«Летящая стрела» или «Стрела Зенона» — одна из самых популярных апорий, дискуссии о которой ведутся вот уже много веков и никакого очевидного и конкретного ответа на неё пока нет.

Само противоречие звучит так:

«Летящая стрела неподвижна, так как в каждый момент времени она занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение».

Ахиллес и черепаха

Ещё одно из противоречий Зенона, основано на том утверждении, что Быстроногий Ахиллес не способен догнать медленную черепаху, если в начале движения черепаха находится впереди. Звучит она так:

«Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху».

Дихотомия

Вот еще один парадокс Зенона:

«Чтобы преодолеть путь, нужно сначала преодолеть половину пути, а чтобы преодолеть половину пути, нужно сначала преодолеть половину половины, и так до бесконечности».

Парадокс лжеца

В научных кругах это установление ещё известно как «апория Евбулида». Её, в том или ином виде, безусловно, слышали практически все:

«То, что я утверждаю сейчас — ложно».

Если это высказывание истинно, получается, исходя из его содержания, верно то, что данное высказывание — ложь; но если оно — ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно.

Таким образом, цепочка рассуждений возвращается в начало. Неразрывно с этой апорией связан и так называемый парадокс Пиноккио: Что будет, если Пиноккио скажет: «Сейчас у меня удлинится нос»? Если нос не увеличится — значит, Пиноккио соврал, и нос будет обязан тут же вырасти. А если нос вырастет — значит, он сказал правду, но тогда почему вырос нос?

Парадокс кучи

Этот логический парадокс также был сформулировал Евбулидом около IV века до н. э. Определение феномена основано на той предпосылке, что одно зёрнышко ещё не формирует кучу. И если мы начнем добавлять к нему каждый раз по одному зёрнышку, то не понятно в какой момент это множество станет кучей. Есть и негативная формулировка: «Если удалять из кучи в 1 млн зёрен по одному зёрнышку, с какого момента она перестаёт быть кучей?»

Лысый

По похожему принципу строится ещё одна апория Евбулида:

«Потеряв один волос, ещё не становишься лысым, потеряв два волоса — тоже; когда же начинается лысина?»

Корабль Тесея

Феномен, который можно выразить так: «Если все составные части исходного объекта были заменены, остаётся ли объект тем же объектом?» В соответствии с греческим мифом, который пересказал Плутарх, корабль, на котором Тесей вернулся с Крита в Афины, хранился афинянами до эпохи Деметрия Фалерского, и каждый год, отправлялся со священным посольством на Делос.

При починке в нём постепенно заменяли доски, до тех пор, пока среди философов не возник спор, тот ли это ещё корабль, или уже другой, новый? Кроме того, возникает вопрос: в случае постройки из старых досок второго корабля какой из них будет настоящим?

Парадокс всемогущества

Наиболее часто этот парадокс формулируют в виде вопроса: «Может ли Бог создать камень, который он сам не сможет поднять?» Парадоксальность состоит в том, что если ему это удастся, значит, его всемогущество утратило силу, а если нет, то он и не был всемогущ.

Софизм Эватла

Интересный логический парадокс древнегреческого происхождения. Этот парадокс иллюстрируется полулегендарным примером.

У древнегреческого софиста Протагора учился софистике и в том числе судебному красноречию некий Эватл. По заключенному между ними договору Эватл должен был заплатить за обучение 10 тысяч драхм только в том случае, если выиграет свой первый судебный процесс. В случае проигрыша первого судебного дела он вообще не был обязан платить.

Однако, закончив обучение, Эватл не стал участвовать в судебных тяжбах. Как следствие, он считал себя свободным от уплаты за учебу. Это длилось довольно долго, терпение Протагора иссякло, и он сам подал на своего ученика в суд. Таким образом, должен был состояться первый судебный процесс Эватла.

Протагор привёл следующую аргументацию: «Каким бы ни было решение суда, Эватл должен будет заплатить. Он либо выиграет свой первый процесс, либо проиграет. Если выиграет, то заплатит по договору, если проиграет, заплатит по решению суда».

Эватл возражал: «Ни в том, ни в другом случае я не должен платить. Если я выиграю, то я не должен платить по решению суда, если проиграю, то по договору»

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Что будем искать? Например,Человек